Definitions | s = t, t T, x:AB(x), x:A. B(x), ES, a:A fp B(a), x:A B(x), Type, EqDecider(T), Unit, left + right, IdLnk, Id, EOrderAxioms(E; pred?; info), f(a), EState(T), Knd, x. t(x), x,y. t(x;y), kindcase(k; a.f(a); l,t.g(l;t) ), Msg(M), type List, , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r s, P Q, , b, constant_function(f;A;B), P & Q, Top, strong-subtype(A;B), E, let x,y = A in B(x;y), , Dec(P), t.1, P Q, A, loc(e), <a, b>, loc(e), kind(e), (e <loc e'), (e < e'), (x l), x:A.B(x), a = b, P Q, P Q, locl(a), e@i. P(e), {x:A| B(x)} , x(s), ee'.P(e), x.A(x), A c B, ee'.P(e), es-p-le-pred(es;P), x:A. B(x), False, a < b, A B, {i..j}, b | a, a ~ b, a b, a <p b, a < b, x f y, xL. P(x), (xL.P(x)), r < s, q-rel(r;x), Outcome, l_disjoint(T;l1;l2), e loc e' , e c e', e<e'.P(e), e<e'. P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e) |